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Three-dimensional hydrodynamic lattice-gas simulations of domain growth and self-assembly
in binary immiscible and ternary amphiphilic fluids
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We simulate the dynamics of phase assembly in binary immiscible fluids and ternary microemulsions using
a three-dimensional hydrodynamic lattice-gas approach. For critical spinodal decomposition we perform the
scaling analysis in reduced variables introduced by Juryet al. @Phys. Rev. E59, R2535~1999!# and by Bladon
et al. @Phys. Rev. Lett.83, 579 ~1999!#. We find a late-stage scaling exponent consistent with theR;t2/3

inertial regime. However, as observed with the previous lattice-gas model of Appertet al. @J. Stat. Phys.81,
181~1995!# our data do not fall in the same range of reduced length and time as those of Juryet al.and Bladon
et al. For off-critical binary spinodal decomposition we observe a reduction of the effective exponent with
decreasing volume fraction of the minority phase. However, then5

1
3 Lifshitz-Slyzov-Wagner droplet coales-

cence exponent is not observed. Adding a sufficient number of surfactant particles to a critical quench of binary
immiscible fluids produces a ternary bicontinuous microemulsion. We observe a change in scaling behavior
from algebraic to logarithmic growth for amphiphilic fluids in which the domain growth is not arrested. For
formation of a microemulsion where the domain growth is halted we find that a stretched exponential growth
law provides the best fit to the data.

DOI: 10.1103/PhysRevE.64.021503 PACS number~s!: 64.75.1g, 07.05.Tp, 82.20.Wt
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I. INTRODUCTION

The study of phase ordering kinetics has become a tes
for complex fluid simulation methods: Despite intensi
analysis by many methods, it remains a field in which n
merous interesting and fundamental questions go un
swered. Constructing a model that correctly includes hyd
dynamics but is computationally simple enough to reach
times is a major theoretical challenge. Mesoscale mod
such as lattice-gas@1,2#, lattice-Boltzmann@3,4#, dissipative
particle dynamics~DPD! @5#, and Boltzmann-Vlasov@6#
treatments have been crucial in increasing our understan
of these systems over the past decade. Such methods re
significantly smaller computational resources than ear
molecular dynamics and Cahn-Hilliard approaches, and
therefore access more easily the late-time regime in wh
hydrodynamics plays an important role.

A much studied system that exhibits hydrodynamic infl
ences on phase segregation is a 1:1 mixture of immisc
fluids quenched into the two-phase region of its phase
gram ~a so-called critical quench!. Such a system undergoe
spinodal decomposition, where the initially bicontinuous d
main structure coarsens by surface tension driven flo
Spinodal decomposition elicits much interest because o
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fundamental and industrial importance. For example, the
chanical properties of alloys depend on the dynamics of
phase separation process. Despite extensive theore
@7–9#, numerical@10–17,1–6#, and experimental investiga
tion @18,19# some doubt remains about the true asympto
late-time growth behavior of these systems.

The dynamics of phase segregation in binary immisci
fluids are also dependent on the composition of the mixtu
Mixtures that do not have a 1:1 ratio of the species~so-called
off-critical quenches! are much less studied than their critic
counterparts. As the quantity of the minority phase d
creases, the domain structure ceases to be bicontinuou
that nucleation and coalescence of droplets dominate
coarsening mechanism.

The addition of surfactant to a system of binary imm
cible fluids radically alters the equilibrium properties a
growth dynamics of such mixtures@20#. In particular, the
adsorption of surfactant~amphiphilic! molecules at oil-water
interfaces leads to a dramatic reduction in the interfacial t
sion. This property is the origin of much industrial interest
surfactant systems. Only recently have computational te
niques and sufficiently powerful parallel platforms becom
available that permit numerical simulation of the hydrod
namic behavior of amphiphilic fluids in three dimension
Our hydrodynamic lattice-gas model has recently be
implemented in three dimensions, and its ability to reprodu
many important phenomenological features of amphiph
systems confirmed@21#. In the present paper we demonstra
this model’s ability to capture quantitative features of t
©2001 The American Physical Society03-1
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dynamics of binary immiscible and ternary amphiphilic fl
ids.

Continuum approaches regard spinodal decompositio
a solution of the equations of motion for two-phase flo
These are given by the Navier-Stokes equation within e
phase, and by boundary conditions at the interfaces. The
compressible Navier-Stokes equations are, for each fl
phase,

rS ]v

]t
1v•“vD5h¹2v2“p, ~1!

“•v50, ~2!

wherev is the fluid velocity,h is the shear viscosity, andp is
the scalar pressure. The first boundary condition is that
velocity of the two phases must match that of the interfa

u1•n5u2•n5uint•n, ~3!

where n is the interface normal andu1 , u2 , and uint are,
respectively, the velocities of phases 1 and 2 at the interf
and the velocity of the interface itself. The second bound
condition requires that the stress difference at the interfac
balanced by the interfacial tension,

TO 1•n2TO 2•n5sS 1

Ra
1

1

Rb
Dn, ~4!

whereTO 1 andTO 2 denote the stress tensors in phases 1 an
Ra andRb are the two principal radii of the interfaces, ands
is the interfacial tension.

Clearly, a numerical integration scheme for the abo
equations would be of enormous computational complex
In order to obtain a numerical model that captures the es
tial physics in a computationally tractable way, an alternat
approach is required. Remaining with a phenomenolog
description of the fluid system, it is convenient to define
scalarorder parameterc:

c~x!5ro~x!2rw~x!, ~5!

wherero(x) andrw(x) are the densities of oil and water
positionx. One may then write a Cahn-Hilliard equation f
the evolution of the order parameter,

]c

]t
1v•“c5l¹2m1Aj, ~6!

where

m5
]F

]c
~7!

and

F5E ddx@ 1
2 c42c21s~“c!2#. ~8!
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This equation is coupled to the Navier-Stokes equati
through a forcing term proportional to the gradient of t
chemical potential,

rS ]v

]t
1v•“vD5h¹2v2“p2c“m1An, ~9!

where Aj and An are Gaussian noise fields satisfying
appropriate fluctuation-dissipation theorem@14#.

Equations~5!–~9! define a model for immiscible fluid dy
namics commonly referred to as model H. This model e
ables one to obtain the scaling regimes for critical spino
decomposition by dimensional analysis. Theviscousregime
is obtained when one may neglect the inertial terms on
left hand side of Eq.~9!; then, balancing the forcing terms b
the viscous terms, one obtains

R~ t !;
s

h
t. ~10!

The inertial regime is obtained by balancing the forcin
termsc“m by the inertial terms in Eq.~1!:

R~ t !;S s

r D 1/3

t2/3. ~11!

Equating these two regimes implies that the crossover fr
viscous to inertial scaling occurs atR;h2/sr. However, no
three-dimensional simulation method so far developed
reach a sufficient range of length and time scales to obs
both viscous and inertial regimes in a single simulation. T
work of Jury et al. @5# and of Bladonet al. @4# overcomes
this difficulty by introducing scaling variablesL0 and T0
which enable data from separate simulations to be combin

If the only physical effects involved in critical spinoda
decomposition are capillary forces, viscous dissipation,
fluid inertia, then the parameters governing domain grow
are the surface tensions, fluid mass densityr, and viscosity
h. As emphasised by Juryet al. @5#, only one lengthL0
5h2/rs and one timeT05h3/rs2 can be constructed from
these parameters. Data sets~L,T! from any model of spinoda
decomposition can be expressed in units of reduced leng

l 5L/L0 ~12!

and time

t5T/T0 . ~13!

If all other physics is excluded from late-stage growth, th
the dynamical scaling hypothesis@8# states that

l ~ t !;a1 f ~ t !, ~14!

where l (t) is the domain size expressed in reduced len
units anda is a nonuniversal constant that allows for a peri
of growth in which molecular diffusion leads to the form
tion of sharp interfaces. The functionf (t) should then ap-
proach a universal form, identical for all 50:50 incompres
ible binary fluid mixtures following a deep quench.
3-2
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The model H equations have been integrated numeric
in three dimensions both withAÞ0 ~a quench to finite tem-
perature! and withA50 ~a quench to zero temperature! by a
number of integration schemes@12,15#. The free energy de
fined in Eq. ~8! is also the basis for the lattice-Boltzman
method of Bladonet al. @4#. Although the lattice-Boltzmann
method has a physical motivation which replaces veloc
and density fields by single-particle distribution functions
is essentially equivalent to direct numerical integration
model H such as that performed in@12,15# ~i.e., it should be
regarded as a finite-difference scheme for solving these e
tions in the absence of noise!. The work of@4,12,15# is there-
fore a confirmation of the scaling laws derived above. T
contribution of Bladonet al. @4#, in whose work both growth
regimes were clearly seen, shows that the simple argum
given above are incorrect in the crossover regime, and
the crossover in model H extends over 102>t>106 in re-
duced time units. It should be noted that this crossover
previously believed from simple scaling arguments to oc
at t51.

Recently there has been further theoretical work by Gr
and Elder: Those authors suggest@22# that growth in the
inertial regime implies a Reynolds number that increa
without limit. This would eventually lead to turbulent remix
ing of the fluids; the requirement that the Reynolds num
be self-limiting~i.e., that the critical Reynolds number is n
reached and therefore that turbulent remixing does not oc!
in the asymptotic regime implies a growth exponent of<1

2.
There is at present no numerical evidence forn< 1

2 , and
recent theoretical challenges to this idea have been m
Novik and Coveney point out in@23# that the relative
strength of the interface~characterized by the Weber num
ber! must also be taken into account. A small Weber num
could delay the onset of turbulent remixing indefinitely.

The hydrodynamic lattice gas used in the present pa
does not rest on the macroscopic free energy functional
posed in Eq.~8!. The model, which is particulate in nature,
described in detail below, and has a theoretical justificat
from a ‘‘bottom up’’ perspective. In a bottom-up view th
lattice-gas technique may be regarded as a simplificatio
the molecular dynamics of a binary fluid, abstracting the k
microscopic properties in a fictitious microworld. Rece
work has derived a microscopic basis for the Rothm
Keller model of binary immiscible fluids@1,24#. However, no
systematic method exists for coarse-graining a real molec
dynamics description of a system to the lattice-gas mo
used here~although such a systematic method does now e
for the DPD algorithm@25#!.

In our model equations~1!–~4! are emergent macroscop
properties. The single-phase FHP lattice gas is known to
isfy Eq. ~1!, and far from interfaces this behavior is repr
duced in our model@26,27#. In Sec. III B we demonstrate tha
our model has realistic surface tension behavior at interfa

The purpose of the present paper is to investigate the
namics of domain growth of both binary immiscible and te
nary amphiphilic phases in our model. Section II contain
brief description of our model, while Sec. III contains a d
scription of the quantitative measurements of surface ten
and viscosity. In Secs. IV, V, and VI we present our resu
02150
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for self-assembly in critical and off-critical binary immis
cible and ternary amphiphilic fluids, respectively. We clo
the paper with discussion and conclusions in Sec. VII.

II. THE LATTICE-GAS MODEL

Our lattice-gas model is based on a microscop
bottom-up approach, where dipolar amphiphile particles
included alongside the immiscible oil and water speci
Lattice-gas particles can have velocitiesci , where 1< i<b,
andb is the number of velocities per site. We shall meas
discrete time in units of one lattice time step, so that a p
ticle emerging from a collision at sitex and time t with
velocity ci will advect to sitex1ci where it may undergo the
next collision. We letni

a(x,t)P$0,1% denote the presence~1!
or absence~0! of a particle of speciesaP$R,B,A% @R, B, and
A denoting red~oil!, blue ~water!, and green~amphiphile!
species, respectively# with velocity ci , at lattice sitexPL

and time stept. The collection of allni
a(x,t) for 1< i<b will

be called thepopulation stateof the site; it is denoted by

n~x,t !PN, ~15!

where we have introduced the notationN for the ~finite! set
of all distinct population states. The amphiphile particles a
have an orientation denoted bysi(x,t). This orientation vec-
tor, which has fixed magnitudes, specifies the orientation o
the amphiphile particle at sitex and time stept with velocity
ci . The collection of theb vectorssi(x,t) at a given sitex
and time stept is called theorientation state. We also intro-
duce thecolor chargeassociated with a given site,

qi~x,t ![ni
R~x,t !2ni

B~x,t !, ~16!

as well as the total color charge at a site,

q~x,t ![(
i 51

b

qi~x,t !. ~17!

The state of the model at sitex and time t is completely
specified by the population states and orientation states o
the sites. The time evolution of the system is an alternat
between an advection orpropagationstep and acollision
step. In the first of these, the particles move in the direct
of their velocity vectors to new lattice sites. This is describ
mathematically by the replacements

ni
a~x1ci ,t11!←ni

a~x,t !, ~18!

si~x1ci ,t11!←si~x,t !, ~19!

for all xPL, 1< i<b, and aP$R,B,A%. This is, particles
with velocity ci simply move from pointx to point x1ci in
one time step. In the collision step, the newly arrived p
ticles interact, resulting in new momenta and surfactant
entations. The collisional change in the state at a lattice six
is required to conserve the mass of each species presen

ra~x,t ![(
i

b

ni
a~x,t !, ~20!
3-3
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LOVE, COVENEY, AND BOGHOSIAN PHYSICAL REVIEW E64 021503
as well as theD-dimensional momentum vector

P~x,t ![(
a

(
i

b

cini
a~x,t ! ~21!

~where we have assumed for simplicity that the particles
carry unit mass!. Thus, the setN of population states at eac
site is partitioned intoequivalence classesof population
states having the same values of these conserved quan

We assume that the characteristic time for collisional a
orientational relaxation is sufficiently fast in comparison
that of propagation that we can model this probability de
sity as the Gibbsian equilibrium corresponding to a loc
sitewise Hamiltonian function; that is,

P~s8!5
1

Z exp@2bH~s8!#, ~22!

whereb is an inverse temperature,H(s8) is the energy as-
sociated with collision outcomes8, andZ is the equivalence-
class partition function. The sitewise Hamiltonian functi
for our model has been previously derived and describe
detail for the two-dimensional version of the model@28#, and
we use the same one here. It is

H~s8!5J•~aE1mP!1s8•~eE1zP!1J:~eE1zP!

1
d

2
v~x,t !2, ~23!

where we have introduced thecolor flux vector of an outgo-
ing state

J~x,t ![(
i 51

b

ciqi8~x,t !, ~24!

the total director of a site

s~x,t ![(
i 51

b

si~x,t !, ~25!

the dipolar flux tensor of an outgoing state

J~x,t ![(
i 51

b

cisi8~x,t !, ~26!

the color field vector

E~x,t ![(
i 51

b

ciq~x1ci ,t !, ~27!

the dipolar field vector

P~x,t ![2(
i 51

b

ciS~x1ci ,t !, ~28!

the color field gradienttensor
02150
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E~x,t ![(
i 51

b

ciE~x1ci ,t !, ~29!

and thedipolar field gradienttensor

P~x,t ![2(
i 51

b

ciciS~x1ci ,t !, ~30!

defined in terms of the scalar director field

S~x,t ![(
i 51

b

ci•si~x,t ! ~31!

and the kinetic energy of the particles at a site

d

2
uv~x,t !u2, ~32!

wherev, is the average velocity of all particles at a site, t
mass of the particles is taken as unity, anda, m, e, z, andd
are coupling constants. To maintain consistency with pre
ous work we use the coupling constants as previously
fined in @21#. The values of these constants are

a51.0, e52.0, m50.75, z50.5.

These values were chosen in order to maximize the des
behavior of sending surfactant to oil-water interfaces wh
retaining the necessary micellar binary water-surfact
phases. It should be noted that the inverse temperature
parameterb ~whose numerical value is varied in this pape!
is not related in the conventional way to the kinetic ener
For a discussion of the introduction of this parameter in
lattice gases we refer the reader to the original work by C
et al. @29# and by Chan and Liang@30#. Equations~23!–~30!
were derived by assuming that there is an interaction po
tial between color charges, and that the surfactant parti
are like ‘‘color dipoles’’ in this context@28#. The term pa-
rametrized bya models the interaction of color charges wi
surrounding color charges as in the original Rothman-Ke
model @4#; that parametrized bym describes the interaction
of color charges with surrounding color dipoles; that para
etrized bye accounts for the interaction of color dipoles wi
surrounding color charge~alignment of surfactant molecule
across oil-water interfaces!; and finally that parametrized b
z describes the interaction of color dipoles with surround
color dipoles~corresponding to interfacial bending energy
‘‘stiffness’’ !. This model has been extensively studied in tw
dimensions@28,31–34#, and the three-dimensional imple
mentation employed in the present paper is described
more detail by Boghosian, Coveney, and Love@21#.

III. VISCOSITY AND SURFACE TENSION

In this section we present the results of simulations
signed to measure the values of the macroscopic phys
parameters that control domain growth in fluid systems
our model, according to the top-down theories described
3-4
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Sec. I. As emphasized above, these parameters are the
face tensions, the viscosityh, and the densityr.

A. Viscosity measurements

We measured the viscosity by analyzing the decay
shear waves. We performed simulations to observe the d
of shear waves with an initial velocity profile of the form

v~x,t !5v0~ t !cosS 2p
x

Nx
Dez , ~33!

whereNx is the lattice size in thex direction, v0(t) is the
amplitude of the shear wave at timet, and ez is the unit
vector in thez direction. Solving the Navier-Stokes equatio
for the time evolution ofv0(t) gives

v0~ t !5v0~0!expF2nS 2p

Nx
D 2

t G , ~34!

wherev0(0) is the initial amplitude of the shear wave andn
is the kinematic viscosity. We therefore initialize the syste
with a velocity profile given by Eq.~33! and observe the
decay of the shear wave by calculating

Vz~x,t !5
1

NyNz
(
yz

vz~x,y,z,t !, ~35!

whereSyz indicates summation over all lattice sites in theyz
plane. This gives the meanz component of velocity, but in-
cludes any netz velocity the system may possess. We su
tract this to obtain the velocity due only to the shear wav

Ṽ~x,t !5Vz2
1

Nx
(

x
Vz~x,t !, ~36!

and calculatev0(t) as the rms value of this quantity,

v0~ t !5A~1/Nx!(
x

@Ṽ~x,t !#2. ~37!

We performed simulations at five different amplitudes of i
tial velocity profile and obtained the kinematic viscosityn
50.7860.01 in lattice units.

B. Surface tension analysis

In the present section we analyze the surface tension
havior in our model for both binary immiscible and terna
amphiphilic systems. The central feature of ternary a
phiphilic fluids is the lowering of the interfacial tension b
tween oil and water by the adsorption of surfactant at
interface. The existence of a spinodal point in a binary i
miscible fluid is an important feature of the fluid’s therm
behavior. At temperatures above the spinodal point the fl
will not demix into single-phase domains. As one increa
the temperature toward the spinodal point the surface ten
should be reduced to zero.

We used a direct dynamical method for calculating
surface tension across a flat interface. In the vicinity of
02150
ur-

f
ay

-
,

e-

-

e
-

id
s
on

e
n

interface the pressure is locally anisotropic, as the pressu
the direction parallel to the interface is reduced by the t
sion on the interface itself. For a system with flat interfa
perpendicular to thez axis the surface tension is given by th
line integral overz of the componentPN(z) of pressure nor-
mal to the interface minus the componentPT(z) tangential to
the interface@35#:

s5E
2`

`

@PN~z!2PT~z!#dz, ~38!

where

PT5Pxx5Pyy , ~39!

PN5Pzz. ~40!

We begin by showing that our model is capable of rep
ducing physically realistic interfacial tensions in systems
binary immiscible fluids. We performed 12 simulations f
values of 0.02>b>100, using systems of size 643. The sur-
face tension was measured every time step for 1000 t
steps. The simulation withb50.02 was above the spinoda
point. The spinodal point itself was located by a compu
tional steering technique, which was found to be compu
tionally more efficient than traditional taskfarm method
The value ofb was modified during a simulation and th
phase separation behavior visualized in real time. The va
of b at the spinodal point was found to be 0.02560.003.
This ‘‘compusteering’’ technique represents a powerful a
economical simulation technique, and will be the subject o
future paper. Equilibration effects were found to be sign
cant only close to the spinodal point, and equilibration tim
for b50.03,0.04, and 0.05 were taken as 400, 200, and
time steps, respectively. All other simulations were allow
to equilibrate for 50 time steps and the surface tension
then time averaged for the remainder of the simulation. T
surface tension as a function ofb is shown in Fig. 1.

FIG. 1. Surface tension as a function of inverse temperature
parameterb ~both in lattice units! for a binary immiscible fluid.
Error bars are not shown, but are smaller than the symbols. Sy
sizes are 643.
3-5
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LOVE, COVENEY, AND BOGHOSIAN PHYSICAL REVIEW E64 021503
We next analyze the behavior of the surface tension a
function of surfactant concentration adsorbed onto an
water interface. We use two types of system, both initializ
with a flat oil-water interface perpendicular to thez direction.
The first system is initialized with a fixed amount of surfa
tant at the interface. The second is initialized with the s
factant dispersed throughout the system. We compute
surface tension as above from Eq.~38!.

The equilibrium state for such a system in our mode
quite complex. The simplistic macroscopic picture of int
faces in ternary systems is fairly static, with a monolayer
surfactant coating the interface and lowering the surface
sion. However, in reality as well as in our model the surfa
tant may also exist in bulk solution far from the interface,
either monomers or micelles or both. Equilibration of t
system is achieved when the rates for adsorption and des
tion of monomers and micelles are equal. These times
typically long, varying from 10 000 to 20 000 time steps
our model.

For the first type of system we simulate, where all surf
tant particles initially reside at the interface, the surface t
sion prior to equilibration calculated by Eq.~38! is an in-
creasing function of time. The surfactant density at
interface decreases with time as monomers and micelles
sorb into the bulk. For the second type of system, where
surfactant particles reside in the bulk, the surfactant den
at the interface increases as the surfactant adsorbs to
interface. The surface tension calculated by Eq.~38! is a
decreasing function of time.

We calculate the surface tension as a function of sur
tant density in two ways. For low surfactant concentratio
where we can reach time scales on which the system
equilibrated we use the surface tension and interfacial d
sity for the equilibrated system. For higher surfactant den
ties where the equilibration times become prohibitive we p
the surface tension at timet against the density at timet. The
results are shown in Fig. 2.

FIG. 2. Surface tension~lattice units! as a function of surfactan
concentration in a ternary system. Squares are values calcu
after equilibration, triangles are calculated as a function of ins
taneous surfactant density. All simulations haveb51.0 and were
run on 64332332 lattices.
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IV. CRITICAL SPINODAL DECOMPOSITION

A. Defining the characteristic size

To analyze the domain growth quantitatively in the fo
lowing simulations we obtain the first zero crossing of t
coordinate-space pair correlation function. This defines
characteristic domain sizeR(t). The pair correlation function
is defined by

C~r ,t !5

E q~x,t !q~x1r ,t !dx3

E dx3

, ~41!

whereq(x,t) is the color charge at sitex, and the integral is
taken over the whole system. We computeC(r ,t) for each of
our simulations, and perform an average over an ensemb
initial conditions. Taking the spherical average ofC(r ,t)
yieldsC(r ,t), the first zero of which gives the characterist
domain size. We obtain the first zero by performing a line
interpolation between the last point greater than zero and
first point less than zero.

B. Scaling analysis

The first test of scaling is applied to the correlation fun
tions of Sec. IV A. If the domain structures are self-similar
different times during the coarsening, the scaling funct
f (x) defined as

C~r ,t !5 f S r

R~ t ! D5 f ~x! ~42!

should be independent oft. Alternatively the scaling criteria
may be applied to the Fourier transform ofC(r ,t), the struc-
ture factor

S~k,t !5
1

NU E q~x,t !exp~2 ik•x!dx3

E dx3
U 2

. ~43!

Spherically averaging this quantity yieldsS(k,t), which has
a similar scaling form:

S~k,t !5L23g~kL!5L23g~q!, ~44!

whereg(q) is the Fourier transform off (x). The functions
f (x) and g(x) for simulations withb.0.07 are plotted as
functions ofx and q, respectively, in Figs. 3 and 4. Thes
data sets scale quite well, whereas datasets from simula
with b<0.07 do not. The specific form ofg(q) has been the
subject of much theoretical attention. The three features
receive the most attention are the small, intermediate,
largeq regimes. We show in Fig. 4 the behavior of our mod
in these three regimes. In the largeq region we see a clea
Porod tail withg(q)}q24. This region ends whenq probes
the scale of the interface width. Furukawa speculated
there would be a regimeg(q)}q26: we see a behavio
closer tog(q)}q27, in agreement with Juryet al. @5#. In the

ted
-
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small q limit we seeg(q)}q2d, with 2<d<4. In @36# the
constraintd<4 was derived for a Cahn-Hilliard theory with
out hydrodynamics. However, this derivation assumed a
namical scaling exponent of13 and did not include fluctua
tions. Furukawa speculated that fluctuations would cause
g(q)}q22g(q)}q4 crossover at smallq.

The above analysis of the correlation functions and str
ture factors is independent of the form ofR(t). We now
introduce the reduced length and time variablesl and t as
defined in Eqs.~12! and ~13!. To exclude finite size effects
we use data for which the characteristic domain size is
than 1

4 of the system size. Data from our simulations satis

FIG. 3. The scaling functionf (x) as defined in Eq.~42! from
the pair correlation function in critical binary phase separation
0.08<b<100 ~lattice units!. Data are taken from all simulations i
this range of inverse temperaturelike parameterb. System sizes are
643 and 1283; data are taken between 100 and 2300 time steps

FIG. 4. The scaling functiong(x) as defined in Eq.~44! from
the structure factor in critical binary phase separation for 0.08<b
<100 ~lattice units!. Data are taken from all simulations in th
range of inverse temperaturelike parameterb. System sizes are 643

and 1283; data are taken between 100 and 2300 time steps.
dotted line is (kL2), the long dashed line is (kL4), the short dashed
line is (kL27), and the solid line is (kL24). They are included as
guides to the eye.
02150
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ing this constraint span a range of 3,t,152 and 1, l
,10. A study using the DPD algorithm reached a range
1, l ,103 and 1,t,53104, and a lattice-Boltzmann algo
rithm has been used to reach a range of 1, l ,23105 and
1,t,53107 @5,4#. The analysis method used to plot th
data displayed in Figs. 5 and 6 from simulations with diffe
ent values ofL0 andT0 is identical to that of Bladonet al.
@4#.

We find that data with 0.10<b<100 show growth with
an inertial (l}t2/3) exponent, andR(t) collapses well onto a
single scaling function. Simulations withb50.03 show slow
growth wherel}t1/3. Visualization of the order parameter fo
these data shows that sharp interfaces do not form during
simulation, and so data for these low values of surface t
sion do not satisfy the criteria for the postulated univer
scaling regime. This is confirmed by our scaling analysis
the correlation functions above, where data for 0.03>b

r

e

FIG. 5. Scaling plot in reduced variables~l,t! for critical binary
immiscible fluid phase separation. Data are from simulations w
b50.03,0.04,0.06,0.08~from left to right!. System sizes are 643.

FIG. 6. Scaling plot in reduced variables~l,t! for critical binary
immiscible fluid phase separation. Data are from all simulatio
with 0.10<b<100. System sizes are 643 and 1283; data are taken
between 100 and 2300 time steps. The solid line has gradient2

3 and
is included as a guide to the eye only.
3-7
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LOVE, COVENEY, AND BOGHOSIAN PHYSICAL REVIEW E64 021503
>0.07 did not collapse onto the same curve shown in Fig
The time evolution of the domain size in reduced units
0.03>b>0.08 is shown in Fig. 5.

This inertial exponent is not consistent with the previo
results of Bladonet al. and Juryet al. @4,5#, although it is
similar to the results of Appertet al. @2#. In @4#, the (l
5ct2/3) scaling of Appertet al.was ascribed to ‘‘excessiv
diffusion’’ in the lattice-gas algorithm. The particulate noi
characteristic of the lattice gas is not present in the latt
Boltzmann algorithm of@2#, and so it is perfectly plausible
that these fluctuations continue to inhibit phase separat
reducing the growth exponent in the viscous regime to so
effective exponent close to the23 usually associated with th
inertial regime. An identical effect is well known in tw
dimensions, where models with fluctuations yield an ex
nent of 1

2 in the early-time regime, and models without yie
an exponent of13 @37,31#.

This issue deserves closer examination, however. If
interpret our structure factor and correlation function data
exhibiting good scaling collapse~i.e., for all times consid-
ered the morphology is characterized by a single len
scale!, then theg(q)} q22g(q)} q4 crossover at smallq is
consistent with speculations by Furukawa that fluctuati
would cause theq2 behavior. As noted above these fluctu
tions may act to inhibit the phase separation and give ris
a lower effective exponent.

Our immiscible lattice-gas model reduces to a simulat
of a convection-diffusion equation forb50.0. The diffusion
constant in this equation is a function only of the collisi
rules. It may be possible by a judicious choice of collisi
rules or addition of rest particles to vary this diffusion co
stant independent of surface tension to fully investigate
effect.

If, however, we interpret the smallq behavior as being
indicative of poor scaling collapse, the exponent seen ma
interpreted as a crossover between an early-time and a
cous regime. This issue could be resolved only by larger
longer simulations, and present hardware limitations m
that this must remain a matter for future investigation.

There is at present considerable uncertainty about both
universality of the asymptotic scaling and what the tr
asymptotic regime is. Theoretical work concerning the d
persion relation on fluid interfaces casts doubt on the univ
sality of hydrodynamic phase separation in three dimens
@38#. Recent work by Kendon@39# proposes a different set o
macroscopically deduced scaling laws, based on the en
balance in the system. This analysis suggests that there
be more than one length scale of importance in spino
decomposition. Another derivation of the growth laws pr
poses thatn5 2

3 is transient and true asymptotic scaling
n5 4

7 @40#. However, it would be difficult to resolve such
subtle difference in exponent with any current numeri
method. In addition, the derivation of@40# assumes a drople
morphology, even in the symmetric case. No such morph
ogy is seen in any simulation of the symmetric case of wh
we are aware. The existence of multiple length scales
breakdown of scaling in two-dimensional spinodal decom
02150
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sition are well established@37,41#, and the existence of a
single underlying scaling function in three dimensions
mains an open question.

V. KINETICS OF PHASE SEPARATION FOR
OFF-CRITICAL BINARY FLUIDS

In this section we analyze the dynamics of domain grow
in systems where the composition is asymmetrical. In s
systems the domain structure is not bicontinuous. The min
ity oil ~or water! phase exists as droplets, and the doma
coarsen by diffusion of oil~or water! from the bulk onto the
droplet, and by droplet coalescence. The compositionf for a
system where oil is the minority phase is defined as

f5
ro

ro1rw
, ~45!

wherero andrw are the reduced densities of oil and wat
respectively. We performed simulations for values off
50.2 and 0.4. These simulations were performed on 643 sys-
tems for 3000 time steps. The correlation function was av
aged over five independent simulations forf50.2, and three
independent simulations forf50.4. The results are shown i
Figs. 7 and 8.

The data in our simulations give effective exponents
0.54360.01 and 0.57360.003 for compositions 0.2 and 0.4
respectively. We do not observe the exponent1

3 expected
from simple theories of droplet coalescence and nucleat
However, as Fig. 9 shows, the morphology for both the
volume fractions is far from being a collection of isolate
drops. It is likely that the exponent we measure is theref
intermediate between the critical case and droplet coa
cence and nucleation. The existence of such intermediate
ponents is well established. Previous work by Appertet al.
@2# on off-critical decomposition forf50.05 also saw
growth more rapid than thet1/3 expected for simple nucle
ation and coalescence. The work of@42# for the two-

FIG. 7. Scaling in off-critical binary phase separation forb
51 with compositionf50.2 ~lattice units!. The solid line is a least
squares fit with effective exponent 0.5460.01. Error bars show one
standard deviation on the mean of five independent simulation
3-8
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THREE-DIMENSIONAL HYDRODYNAMIC LATTICE-GAS . . . PHYSICAL REVIEW E 64 021503
dimensional implementation of our model similarly saw
continuous variation of exponent with composition, as d
@23# for equal viscosity DPD fluids.

VI. SELF-ASSEMBLY IN TERNARY AMPHIPHILIC
FLUIDS

In this section we turn to the analysis of ternary a
phiphilic fluids. We concentrate on systems with equ
amounts of oil and water, varying the amount of surfact
for each simulation. The presence of surfactant dramatic
alters the interfacial energetics and structure, and co
quently the dynamics of domain growth. Specifically, the a
sorption of surfactant at oil-water interfaces and its conco
tant lowering of the surface tension weaken the forces
drive binary immiscible phase separation. For sufficien
large surfactant concentrations the final equilibrium state
bicontinuous or spongemicroemulsionphase, where the do
main growth is arrested at some final characteristic dom
size Rc . Such a system is depicted in Fig. 10. All thre
components are bicontinuously connected, with the sur
tant particles lining the interface in a monolayer between
percolating oil and water regions.

We work withb51.0 and use the values for the couplin
coefficients in Eq.~23! as defined earlier~in Sec. II!. The
results that follow for the ternary emulsion system have b
obtained from a 643 system with periodic boundary cond
tions in all directions, the system having been intialized fro
a random quench with the particles placed randomly on
lattice. The total reduced density of the system was k
constant at 0.5. The characteristic domain sizeR(t) was
measured from the spherically averaged pair correla
function as described in Sec. IV A. The growth of sponge
opposed to droplet phases in these systems means that fo
lowest values of the surfactant concentration the growth
havior should represent a perturbation of the criti
quenches investigated in Sec. IV. The results for redu

FIG. 8. Scaling in off-critical binary phase separation forb
51, at a compositionf50.4 ~lattice units!. The solid line is a least
squares fit with effective exponent 0.57360.003. Error bars show
one standard deviation on the mean of three independent sim
tions.
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surfactant concentrations 0.02, 0.06, and 0.08 support
conclusion. In all cases the late-time behavior is consis
with an algebraic growth law of the formR;t2/3 ~see Fig.
11!. Prior to this there is an early-time regime in which th
growth is consistent with a diffusive algebraic exponent
1
3 . Visualization of the surfactant densities during this peri
shows that surfactant adsorbs at the oil-water interfaces.

Once the system reaches the bicontinuous oil and w
state the inertial hydrodynamic regime begins. The length
the diffusive period increases with increasing surfactant c
centration~50 time steps for reduced surfactant concentrat
rs50.02, 60 time steps forrs50.04, 70 time steps forrs
50.06, and 100 time steps forrs50.08!. As one increases
the surfactant concentration the fluctuations in the dom
size at late times increase. This is consistent with the kno
dynamical nature of the adsorption and desorption of sur
tant to and from interfaces in ternary systems as one
proaches emulsification. With a reduced surfactant densit
0.10 the time evolution of the domain size ceases to foll

la-

FIG. 9. Interface morphology at time step 500 for minori
phase~oil! volume fraction 0.20~a! and 0.40~b!. System size is
643.
3-9
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LOVE, COVENEY, AND BOGHOSIAN PHYSICAL REVIEW E64 021503
FIG. 10. Sponge microemulsion phase at time step 850 foll
ing a random initialization.~a! Water slice plane.~b! Surfactant
slice plane.~c! Oil slice plane. The system size is 643. Reduced
densities of oil, water, and surfactant in this system are 0.19, 0
and 0.12, respectively.
02150
the algebraicR;t2/3 growth law. We see a slower-than
algebraic growth law, as previously observed in the tw
dimensional implementation of our model where a grow
function R(t)5(ln t)u was proposed, based on a comparis
with slow growth in systems with quenched impuritie
@31,43#. Consequently, we look at a plot of lnt against do-
main size in order to determine whether we have logarith
cally slow growth in this regime. The characteristic doma
sizesR(t) for surfactant concentrations 0.10, 0.12, 0.14, 0
are plotted against lnt on logarithmic scales in Fig. 12. On
can clearly see a transition through a regime where logar
mically slow growth dominates throughout the time scale
the simulation. Such a growth law is inconsistent with arr

FIG. 12. Crossover in ternary domain growth behavior to log
rithmically slow growth, and then to an intermediate regime. S
factant concentration 0.10 shows behavior in a regime crossing
from algebraic to logarithmic growth. Surfactant concentratio
0.12 and 0.14 show convincingly logarithmic growth, while co
centration 0.16 shows time evolution in a regime between logar
mic and stretched exponential growth. Both time and character
size are measured in lattice units.

-

9,

FIG. 11. Time evolution of characteristic domain size~lattice
units! for a ternary amphiphilic fluid with reduced densities of o
water, and surfactant 0.24, 0.24, and 0.02, respectively. The s
line is a fit with an effective exponent of 0.59. The error bars sh
one standard deviation on the mean of five independent simulati
The system size is 643.
3-10
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of the domain growth at late times for reduced surfact
density below 0.16. As we increase the reduced surfac
density beyond 0.16 we see complete arrest of the dom
growth at late times. We performed a fit of a stretched ex
nential function to data sets from simulations withrs
50.18. This function is defined identically as in@31#:

R~ t !5A2B exp~2CtD!. ~46!

These fits are shown in Fig. 13. To quantify the effect t
the surfactant has on the domain size at late times in th
simulations, following Emertonet al. @31# and Gyureet al.
@43#, we defineRc as the domain size at time step 850, whe
data that are unaffected by finite size effects are available
all surfactant concentrations. We plotRc against the inverse
of the reduced surfactant density at the interface~having sub-
tracted the micellar and monomeric concentrations! in Fig.
14 ~for systems with quenched impurities the amplitude
the disorder is analogous to the surfactant concentration!. We
find a linear dependence ofRc on 1/rs , consistent with the
results found in@31# and @43#.

VII. CONCLUSIONS

We have studied the dynamics of domain growth in bin
immiscible fluids, in both critical and off-critical cases, an
in ternary ~oil-water-surfactant! emulsions and microemul
sions, using a three-dimensional hydrodynamic lattice-
model. In the critical binary case we performed a scal
analysis similar to that of Juryet al. @5# and Bladonet al. @4#

FIG. 13. Plot of characteristic domain size against time~both in
lattice units! for a ternary system with reduced surfactant dens
0.18. The solid line is a least squares fit of a stretched expone
function to the data. Error bars show one standard deviation on
mean of five independent simulations. The system size is 643.
y
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and find late-time growth behavior that is consistent with
inertial hydrodynamic exponent. However, the position
the late-time domain growth on a plot of reduced time va
ables~l,t! is not consistent with that of@5,4#, in the same way
that the results of Appertet al. @2# showed an inertial expo
nent in a crossover region of the reduced scaling plot. In
off-critical case we find effective exponents of 0.57 and 0
for compositionsf50.4 and 0.2, respectively. In the micro
emulsion case we observe a slowed algebraic growth w
exponent23, followed by a regime in which we see evidenc
for logarithmically slow growth. For concentrations of su
factant high enough to completely arrest domain growth
observe good agreement with a stretched exponential fi
our data. Overall, all our results are fully consistent w
behavior we observed previously in our two-dimension
lattice-gas model.
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